18 research outputs found

    Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs

    Get PDF
    The VertexCover problem is proven to be computationally hard in different ways: It is NP-complete to find an optimal solution and even NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice. When utilizing the same structural properties in an adaptive greedy algorithm, further experiments suggest that, on real instances, this leads to better approximations than the standard greedy approach within reasonable time

    Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry

    Get PDF
    Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of ?2. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a (1 + o(1))-approximation, asymptotically almost surely, and has a running time of ?(m log(n)). The proposed algorithm is an adaption of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach

    Partitioning the Bags of a Tree Decomposition into Cliques

    Get PDF
    We consider a variant of treewidth that we call clique-partitioned treewidth in which each bag is partitioned into cliques. This is motivated by the recent development of FPT-algorithms based on similar parameters for various problems. With this paper, we take a first step towards computing clique-partitioned tree decompositions. Our focus lies on the subproblem of computing clique partitions, i.e., for each bag of a given tree decomposition, we compute an optimal partition of the induced subgraph into cliques. The goal here is to minimize the product of the clique sizes (plus 1). We show that this problem is NP-hard. We also describe four heuristic approaches as well as an exact branch-and-bound algorithm. Our evaluation shows that the branch-and-bound solver is sufficiently efficient to serve as a good baseline. Moreover, our heuristics yield solutions close to the optimum. As a bonus, our algorithms allow us to compute first upper bounds for the clique-partitioned treewidth of real-world networks. A comparison to traditional treewidth indicates that clique-partitioned treewidth is a promising parameter for graphs with high clustering

    Efficiently Generating Geometric Inhomogeneous and Hyperbolic Random Graphs

    Get PDF
    Hyperbolic random graphs (HRG) and geometric inhomogeneous random graphs (GIRG) are two similar generative network models that were designed to resemble complex real world networks. In particular, they have a power-law degree distribution with controllable exponent beta, and high clustering that can be controlled via the temperature T. We present the first implementation of an efficient GIRG generator running in expected linear time. Besides varying temperatures, it also supports underlying geometries of higher dimensions. It is capable of generating graphs with ten million edges in under a second on commodity hardware. The algorithm can be adapted to HRGs. Our resulting implementation is the fastest sequential HRG generator, despite the fact that we support non-zero temperatures. Though non-zero temperatures are crucial for many applications, most existing generators are restricted to T = 0. We also support parallelization, although this is not the focus of this paper. Moreover, we note that our generators draw from the correct probability distribution, i.e., they involve no approximation. Besides the generators themselves, we also provide an efficient algorithm to determine the non-trivial dependency between the average degree of the resulting graph and the input parameters of the GIRG model. This makes it possible to specify the desired expected average degree as input. Moreover, we investigate the differences between HRGs and GIRGs, shedding new light on the nature of the relation between the two models. Although HRGs represent, in a certain sense, a special case of the GIRG model, we find that a straight-forward inclusion does not hold in practice. However, the difference is negligible for most use cases

    Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry

    Get PDF
    Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this trade-off. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of 2\sqrt{2}. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we narrow the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a (1+(1))-approximation, asymptotically almost surely, and has a running time of O(mlog(n)){\mathcal {O}}(m \log (n)). The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the trade-off between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach

    Strongly Hyperbolic Unit Disk Graphs

    Get PDF
    The class of Euclidean unit disk graphs is one of the most fundamental and well-studied graph classes with underlying geometry. In this paper, we identify this class as a special case in the broader class of hyperbolic unit disk graphs and introduce strongly hyperbolic unit disk graphs as a natural counterpart to the Euclidean variant. In contrast to the grid-like structures exhibited by Euclidean unit disk graphs, strongly hyperbolic networks feature hierarchical structures, which are also observed in complex real-world networks. We investigate basic properties of strongly hyperbolic unit disk graphs, including adjacencies and the formation of cliques, and utilize the derived insights to demonstrate that the class is useful for the development and analysis of graph algorithms. Specifically, we develop a simple greedy routing scheme and analyze its performance on strongly hyperbolic unit disk graphs in order to prove that routing can be performed more efficiently on such networks than in general

    Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

    Get PDF
    A recent trend in the context of graph theory is to bring theoretical analyses closer to empirical observations, by focusing the studies on random graph models that are used to represent practical instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs) yield good representations of complex real-world networks, by expressing edge probabilities as a function that depends on (heterogeneous) vertex weights and distances in some underlying geometric space that the vertices are distributed in. While most of the parameters of the model are understood well, it was unclear how the dimensionality of the ground space affects the structure of the graphs. In this paper, we complement existing research into the dimension of geometric random graph models and the ongoing study of determining the dimensionality of real-world networks, by studying how the structure of GIRGs changes as the number of dimensions increases. We prove that, in the limit, GIRGs approach non-geometric inhomogeneous random graphs and present insights on how quickly the decay of the geometry impacts important graph structures. In particular, we study the expected number of cliques of a given size as well as the clique number and characterize phase transitions at which their behavior changes fundamentally. Finally, our insights help in better understanding previous results about the impact of the dimensionality on geometric random graphs

    A simple statistic for determining the dimensionality of complex networks

    Full text link
    Detecting the dimensionality of graphs is a central topic in machine learning. While the problem has been tackled empirically as well as theoretically, existing methods have several drawbacks. On the one hand, empirical tools are computationally heavy and lack theoretical foundation. On the other hand, theoretical approaches do not apply to graphs with heterogeneous degree distributions, which is often the case for complex real-world networks. To address these drawbacks, we consider geometric inhomogeneous random graphs (GIRGs) as a random graph model, which captures a variety of properties observed in practice. These include a heterogeneous degree distribution and non-vanishing clustering coefficient, which is the probability that two random neighbours of a vertex are adjacent. In GIRGs, nn vertices are distributed on a dd-dimensional torus and weights are assigned to the vertices according to a power-law distribution. Two vertices are then connected with a probability that depends on their distance and their weights. Our first result shows that the clustering coefficient of GIRGs scales inverse exponentially with respect to the number of dimensions, when the latter is at most logarithmic in nn. This gives a first theoretical explanation for the low dimensionality of real-world networks observed by Almagro et. al. [Nature '22]. Our second result is a linear-time algorithm for determining the dimensionality of a given GIRG. We prove that our algorithm returns the correct number of dimensions with high probability when the input is a GIRG. As a result, our algorithm bridges the gap between theory and practice, as it not only comes with a rigorous proof of correctness but also yields results comparable to that of prior empirical approaches, as indicated by our experiments on real-world instances

    On the Giant Component of Geometric Inhomogeneous Random Graphs

    Get PDF
    In this paper we study the threshold model of geometric inhomogeneous random graphs (GIRGs); a generative random graph model that is closely related to hyperbolic random graphs (HRGs). These models have been observed to capture complex real-world networks well with respect to the structural and algorithmic properties. Following comprehensive studies regarding their connectivity, i.e., which parts of the graphs are connected, we have a good understanding under which circumstances a giant component (containing a constant fraction of the graph) emerges. While previous results are rather technical and challenging to work with, the goal of this paper is to provide more accessible proofs. At the same time we significantly improve the previously known probabilistic guarantees, showing that GIRGs contain a giant component with probability 1 - exp(-?(n^{(3-?)/2})) for graph size n and a degree distribution with power-law exponent ? ? (2, 3). Based on that we additionally derive insights about the connectivity of certain induced subgraphs of GIRGs
    corecore